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HIGH-SPEED CASCADE TESTS OF

THE NACA 65- (12A10)10 AND NACA 65- (1280Tgp) 10

COMPRESSCOR BILADE SECTIONS

By James C. Dunsvant, James C. Emery, Howard C. Walch,
and Willard R. Westphal

SUMMARY

Two-dimensional porous~wall cascade tests of the NACA 65-(12A10)10
and NACA 65-(12A2I8b)10 blade sections were made at Mach numbers from

0.3 to choking in most cases. Data were obtained at solidities of 1.0
and 1.5 at inlet-air angles of 45° and 60° for both blade sections. With
a solid-wall modification to the cascade tunnel, schlieren observations
were made of the flow in cascade at a solidity of 1.5 and inlet-air angle
of 45° and at a solidity of 1.0 and inlet-air angle of 60°.

Test results for the NACA 65-(12A10)1O blade section show that the
turning angles measured at low speed 4o not change significantly as the
speed increases until the critical Mach number is exceeded. Because of
increasing separation from the highly cambered tralling-edge region,
the turning angles for the NACA 65-(La$2I8b)lO blade section decreased

as much as 4O from low speed to eritical speed. The high-speed verform-
ance of the NACA 65—(12A10)10 and the NACA 65—(12A2I8b)10 blade sections

is largely determined by the passage area distribution. The angle of
attack for best operation at high Mach numbers is higher than the design
angle of attack selected at low speed to have pressure distributions
that are free of vpeaks.

INTRODUCTION

Conventional compressors frequently have used the uniformly loaded
NACA 65-(CZ°A10)10 blade section for which low-speed cescade data are
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eveilable in reference 1. In order to obtain high critical speeds, the
ApIgy, mean line having most of the loading in the trailing-edge region

was devised and low-speed cascade tests of blade sections using this
mean iine are reported in reference 2. Rotor tests of the AyIg),, mean

iine at Mach numbers up to 1.13 (ref. 3) were highly successful. These
<wo blade sections representing two significantly different types of
loading were selected for the first high-speed tests in the porous-wall
cascade vhere detailed examinastion of blade passage flows could be made
to determine the manner in which high subsonic speeds affect blade per-
formance and whether design information obtained In low-speed testing
is satisfactorily correct at high speeds.

Two-dimensional porous-wall cascade tests of the NACA 65-(12Alo)10
and the NACA 65-@2%215b)10 blade sections were made at Mach numbers

from 0.30 to & high subsonic Mach number that freguently choked the
cascade and vroduced blade-surface Mach numbers above l.4. Cascade con-
figurations were solidities of 1.0 ard 1.5, end Ilnlet-air angles of
both 45° and 60° for both blade sections. With a solid-wall modifice-
tion to the cascade, schlieren Qrservations were m=de at several angles
of attack for cascade configurations of solidity 1.5 and inlet-air
engle 45° and solidity 1.0 and inlet-air angle 60°.

SYMBOLS

A flow area

c blade chord

Czo camPer,.expressed as design 1ift coefficient of isoclated
airfoll

Cw momentum-loss coefficient

Fo ratio of wake momentum loss %o integréted totali-pressure
loss in wake

M Mech number

D gtatie pressure

P wotel pressure

q dynemic pressure, %pve
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s tangentiel spacing between blades

S pressure coefficient, E;Eiial

v velocity

W wake width f

o angle of attack: angle between entering flow direction
and chord

B air angle measured from perpendicular to blade row

el wake bplockage

e turning engle

o} densizty

g solidity: chord-spacing ratio, c/s

Subscripts:

1 upstream of blade row, undisturbed stream

2 downstream of blade row

cr critical, condition of first attainment of sonic velocity

on blade surface
1 local, as on blade surface

T throet of blade passage

APPARATUS AND METHODS

The Langley T-Inch High-Speed Cascade

A schemetic diagram of the Langley T-inch high-speed cascade is _
shown in Tigure 1. The flow enters the LO-inch-diameter upstream duct
and settling chamber through three 50-mesh screens and is accelerated
smoothly through inlet fairings into a channel 7-3/8 inches wide with
a maximum height of 22 inches. Upper and lower inlet fairings are
edjustable vertically to match the vertical height of the varticular
cascade under test. The upper and lower walls of the test section are




b S NACA RM I55T08

attached to and move with the inlet fairings. These walls end downstream
in flexible feirings which are adjusted to simulate another blade sur-
face. The lover flexible wall is made of porous material placed over a
suction chesmber to prevent separsation. The side walls carry the test-
section walls, the blade row, Instruments, and other equipment which
remains fixed relative to the blade row. The side walls can be rotated
for a 0% to 66° range of inlet Tlow angles relative to the cascade. The
cescade is equipped with slots on all four walls which protrude 3/16-inch
into the channel and reduce its width to 7 inches Just ahead of the blade
row. Suction chambers enclose the slot exteriors and are connected to

a suction system for removal of the wall btoundary leyers.

In order to meet the reguirement of two-dimensiconal flow, which
will be discussed in deteil later, the cascade was equipped with porous,
rerovable side-wall sections into which the blade row is affixed. The
porous-wall sections are constructed of layers of rolled monel filter
cloth backed with a perforated steel plate end have exterior chambers
which a2lso connect to the suction system. The porosity of these walls
rast e such that tke amount of flow through the surface is sufficient
to remove the boundary layer for most of the test conditions, yet not
80 porous as to induce recirculation. The meaterial selected was satis-
factory for tests at most speeds. At the higher Mach numbers the flow
trrough the test-secticn porous surfaces fell short of that reguired
and the flow was not two dimensional. Data are marked when flow removal
was insufficient. For schlieren observations these porous test-section
walls were repleced with solid walls having approximately 5- by T-inch
glass windows.

Flow Surveys

Three total-pressure rakes were installed for wall boundary-layer
survey. The first was positioned ahead of the slde wall slot; the
second, behind; ard the third, on the lower wall ahead of the glot. A
wide range of sliot-chamber pressures were investigated. A comparison of
the wall boundary-layer profiles showed the rost effective slot-chamber
pressure was less than the test-section static pressure by about 20 per-
cent of the test-section impact pressure P - p.

The test section was surveyed upstream of a typical cascade set at
an inlet-air angle of By = 60° to determine the uniformity of the flow

under the ususl overating conditions. Uniform upstream and downstream
static pressure distributions were set by varying the upper and lower
wall slot pressures and by varying the position of the flexible upper
and lower well ends. Then flow angle and totel pressure were measured
at two positions, the first a quarter-test-section reight from the lower
wall and the second a quarter-test-section height from the upper wall.

oy
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Shown in figure 2 are the flow angles and total pressures measured ahead
of the blade row. There is a deviation of approximetely 1° in the test-
section flow. No correction has been applied to the data for this
deviation.

The temperature of the flow upstresm was maintained at from 150°
to 160° F at high speeds to avoid any possible condensation effects.
This temperature was sufficient even under highly humid locel conditions
(for example, 90° F and TO-percent relative humidity) %o reduce the
relative humidity to 20 percent in the upstream duct without the use of
air-drying equipment. According to reference 4, at 20-percent relative
humidity the flow is essentially free of condensation for Mach numbers
greater thaen the maximum entering Mech number of 1.0 cobtained in these
tests.

Test Procedure

For a typical cascade test the followlng gquantities were measured:
(1) the total pressure in the upstream duct; (2) upstream static pres-
sures measured by 10 or more orifices located one chord length upstream
of the blade row (but downstream of the wall boundary-layer removel
slot as shown in fig. 1); (3) downstream static pressures measured by
from 8 to 10 orifices approximately one-half chord length downstream
of the blade row; (4) upper and lower blade-surface static pressures
measured by 21 orifices located at midspan of the center blede;
(5) turning angle measured approximastely one chord length downstream
of the blades at midspan and behind the four centermost passage exits;
and (6) the total pressure in the wake of the center blade at midspan
which was measured by a 26-tube rake. When measuring turning angles,
care was taken to insure that the readings were not affected by the
wake of the blades. For this purpose the two yaw tubes were very closely
spaced and the total pressure tubes were mounted 1/2 inch to each side.
Turning angle was recorded only when full total pressure was present at
the two outer tubes.

The sccuracy of the turning angle is dependent not only on the
survey instrument and its position behind the passage but also on the
setting of the slot suction pressures, the porous-wall chamber pressures,
and the flexible walls. The Instrument is estimated to be accurate
to 10.3° and turning sngle is repeateble for any test to t1.0°. The
turning angles presented are the measured angles and are not altered
for chenge in axial velocity across the cascade.

The necessity of porous-wall boundery-layer removal to produce
cascade data which would be two dlmensional and in agreement with blower
dete was established in reference 5 for low speeds. Two-dimensional
flow (no spanwise convergence or divergence of the stream tubes) was
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mainteined in these high-speed tests whenever possible. In order to
achieve thils condition the well boundary layers were removed to prevent
eny decrease in passage width which would otherwlse increase downstream
velocity. As the boundary layers are rerioved from the blade-passage

erd walls, blade-row pressure rise increases and the downstream velocity
decreases. Thus, changes in porous-wall test chamber pressures were
used to adjust boundary-lsyer removal and hence prevent stream-tube con-
vergerce. 7o esteblish that two-dimensional flow was present, cascade
turning angles were measured and used to calculate an ideal value of

the downstream impact pressure (Pl - p2) for the particular upstream

impact pressure (Pl - Pl)' The porous-walil chamber pressure was adjusted

until the value of (Pl - p2) was equal to the idesl value of (Pl - p2)
rlus = small excess proportional to the amount of wake blockage present.
Charges in turning angle or the wake resulting from the new flow condi-
tiorns required readjustrment of the amount of boundary layer removed.

For some higr-sngle-of-atteck, high-pressure-rise cascade confilgu-
resions, attempts to establish the static-pressure rise required for
two-dimensional fiow resulted in separation from the blade upper sur-
faces, especially at the higher Mach numbers. Since no useful data can
be obtained with the biade in a badly separated condition, the require-
mert for two-dimensional flow was relaxed and the cascade did represent
a passage that converged spanwise. In relaxing the itwo-~dimensional
requiremert and hence the pressure rise, turning angles increase over
the two-dimensional value. Examination of the data shows that for some
conditions without sharply defined separation the effects of separaitlon
are still present regerdless of vhetrher the flow is two dimensional or
not.

For flow observations by the schlieren method, the requirement of
two-dimensional flow was waived. The resulting test-section pressure
rise was usually less than that obtained with the porous-wall setup.
This difference in pressure rise sometimes caused a change in flow
separation on the blades which wes evident in comparison of wake-loss
coefficients.

Reduction of Data

A momentum-loss coefficient was calculated from the measured total
pressure loss by the method of reference 6 for calculating wake force.
Momentum loss was calculated fror the downstream conditions and is
expressed in coefficient form based on the dynamic vressure upstream of
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the cascade. Hence,

TJ P - P
Gy, = Feo 1_2 dw
1 q.,c
- ~0 1

vhere F, (determined from ref. 6) is the ratio of the momentum-loss

coefficient to the total pressure-loss coefficient for an assumed wake
shepe as a function of the meximum total pressure loss and Mach number.

A calculated check of the two dimensionality of the flow was made

Tor all tests. Tests are consldered two dimensional if the test pres-
Po - Py

9
rise calculated from the entering Mach number, inlet-air angle, turning
angle, and the weke blockage of the test. The wake blockage was calcu-
lated for a number of assumed cosine-shaped wakes 1l heving equal
momentum loss but different widths and heights. It was found that the
weke blockages for &ll practical purposes were equal except for wakes
having velocities less than 0.6 of the free-stream velocity. Such a
condition would correspond to a wake taken practicelly at the trailing
edge of a blade section. For these tests with the wakes messured almost
a chord downstream it was concluded that the wake blockage would be pro-
portional to the total-pressure loss. To obtaln the exact relationship
the wake blockages of & number of the test wakes were calculated and
plotted against the integrated totel-pressure loss, snd the following
relationship for the wake blockage & was indicated:

sure rise is greater than 90 percent of the ideal pressure

-

7P, - Py
% = O.S:Lf —_——'—q c dw
0 2

The ideal pressure rise for the cascade was obtained from the displace-
ment thickness and isentropic relationships. This ideal value was com-~
pared to the measured pressure rise to determine the maximum Mach number
for which the tests are considered two dimensional.

PRESENTATION OF RESULTS

The results of the porous-wall cascade tests are presented in fig-
ures 3 to 52. A list of the cascade configurations tested and corresponding
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figure numbers are tabulated in table 1. For each blade setting, four
to six pressure distributions representative of the variation of surface
pressures throughout the Mach number range tested are given. The down-
P. -
stream siatic pressure —;EI-EQ is indicated on the pressure dlstribu-
tions by the horlzontal line at 100-percent chord. The variation of
turning angle, momentum-loss coefficient, and pressure rise are presented
in figures immediately following each pressure-distribution figure.
The limit of two dimensionality of the tests is Indicated by the ver-
tical line on the sectlon characteristics, figures 3 to 52. Schlieren
figures 53 to 67 contain five to eight representative schlieren photo-
graphs and are followed by figures showing the variation of turning
angle, momentum-loss coefficlent, and pressure rise obiained in the
schlieren test. (See table I.) 1In figures 68 to 75, turning angle is
plotted against angle of esttack at M; = 0.30 and at critical speed.

Turning sngles measured in the low-speed cascade tunnel (refs. 1 and 2)
are also plotted for comparison. In figures 76 to 83 momentum-loss
coefficlients at various constant Mach numbers are plotted for the angles
of attack tested.

DISCUSSION OF RESULTS

Turning angles.- Good correlation of turning angle was obtained
between tests of the 65-(12A10)10 blade sectlon made in the low-speed

cascade (M} < 0.15 and Reynolds number = 245,000 and 444,000 in ref. 1)
and tests made in the high Mach number cascade at M; = 0.30

(Reynolds number = 550,000). TFigures 68 to 71 show the turning angles
to be nearly equal at these speeds. At critical speed the turning
angles are essentially unchanged from the M; = 0.30 values. (See

figs. 68 to 71.} Mack nuriber had negligible effect on the turning
angle of the 65—(12A10)10 blade sectlon uvniil supersonic velocities

occurred on the blade surface and momentum losses increased. At speeds
above critical, turning angles decreased due to the lower pressures

over the blade lower surface caused by a decrease Iin the angle of attack
locally (discussed later) and/or by separation on either blade surface.
The separation, which may or may not be caused by a shock, reduces the
blade-row pressure rise and hence reduces the downstream pressure which
largely determines the lower surface pressure over the rearward portion
of the blade.

The turning angles measured for the 65-(12A218b)10 blade section

are affected greatly by the unusual highly curved portion of the loaded
trailing edge of the airfoils. The variation of turning angle with
Mach number is shown in figures 28 to 52 and the variation of turning
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angle with angle of attack is shown in figures 72 to 75. Tor the
65-(12A218b)10 blade section the turning angles obtained in the high

Mach number cascade tummel at M; = 0.30 were in agreement with turning

angles measured at low speed. Increasing the Mach number to critical,
lowered the turning angle as much as 4° in some cases while other tests
showed no decrease in turning angle. The turning angle usually decreased
rapidly es the losses increased.

The jog in the turning angle, angle-of-attack plots for the
65—(12A218b)10 blade section (figs. 73 to 75) is a result of the shift

of the minimum pressure and boundary-layer transition point from the
trailing-edge region at low angles of attack to the leading edge at
high angles of ettack. Low turning sngles are produced when the tran-
sltion is near the leading edge because the turbulent boundary layer
thickens along the blade surface and may separate sooner in the highly
curved treiling-edge region. A like phenomenon is found in tests of
isolsted airfoils and is discussed in reference 7. Pressure distribu-
tions at B8y = 60° end o = 1.0 (fig. 72) indicate laminar separation

is occurring shead of the highly curved trailing edge.

The highly curved trailing edge of the 65—(12A218b)10 blade section

is conducive to separatiion. The extent of the separation and hence the
turning angle is determined by the required pressure rise and the condi-
tion of the boundary layer spproaching the curved portion, and results in
irregular turning-angle variations.

High-speed loss increase.- Except for sngles of attack at which the
flow is separated at low speed, the momenturm-loss coefficient (see
figs. 3 to 27) increased rapidly for the 65—(12Alo)10 blade section at

Mach numbers of from 0.75 to 0.85, about 0.05 to 0.10 greater than the
critical Mach number. This behavior 1s similar to that of isolated
airfoils. For the Mach numbers at which the momentum loss increased
the maximum blade surface Mach numbers were between 1.09 and 1.26. The
total pressure loss across a normal shock at these Mech numbers would
not have produced this increase in momentum-loss coefficient. The
distribution of the losses measured in the total-pressure surveys msde
in the passage behind the blade row indlcate the losses originate on
the blade surface rather than in the passage. Schlieren photographs,
figures 53 to 59, indicate increased separation of boundery layer from
the blade surface. :

Tre momentum loss for the 65-(12A218b)10 blade section was usually
grester than for the 65-(12A10)10 blade section because of separation
of flow from the trailing edge.
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In figures 76 to 83 momentum-loss coefficients at various constant
Mach numbers are plotted for the angles of attack tested. The useful Y
angle-of-attack range 1s bordered by high-loss regions. At low speed,
peaked blade surface velocitles at high and low angles of attack result
in thicx and separated boundary layers producing the high losses that
1imit the useful angle-of-attack range. Since higher speeds accentuate
peaked velocities it was expected that higher losses would be measured
in the angle~of-attack regions having pesked low spesd pressure dis-
tributions. Useful angle-cf-attack range does decrease at higher
Macn numbers for both blade sections as shown in figures T6 to 83.

Passage area dlstribution.- At high speeds the passage area distri-
bution and minimum throat area determine some important blade operating
characteristics. For 65-(12A10)10 and 65-(12A2I8b)lo blade cascades at

inlet-air angles greater than 40° the throat area extends from a lower
surface point very near the leading edge to an upper surface point near
midchord. When the throat area is less than the upstream flow ares

(see fig. 84), compressibility effects accentuate the throat contraction
and cause a disproportionate increase of the velocitlies 1n the throat
region. The pressure distribution shows the formation of velocity peaks )
near the leading edge on the lower surface, locally decreasing the
loading, and near midchord on the upper surface, increasing the losding.
A result of this shift of the loading rearward is to increase the adverse
presgure gradient over the rear portion of the upper surface and thereby
increase boundary-layer growth and the tendency to separate. Typical ¥
examples of the rearward shift of loading can be seen in figures 22

and 47. At choke the pressure over the upper surface decreases from a

high value at the leading edge to a minimum at the throat (near midchord)

while the lower surface pressure at the leading edge is a minimum.

Hence, the blade sections appear to operate at a lower angle of attack

at high speed than at low speed.

For high angles of attacx at which the cascade did not choxe, the
upwash and hence the surface pressures in the leading-edge region is
greatly influenced by the proximity of the upper surface of the upstream
blade. Increased interference from the upper surface of the upstream
blede due to compressibility even at Mach numbers below critical causes
a decrease in tre upwash as Mach number increases. Above critical speed
the blade-surface shocks terminate & supersonic region through which the
rressure influences of the rearward parts cannot be propagated and
thereby eliminete their effect on the flow fleld ahead of the blades
and thus decrease the upwash. Hence, the effective angle of attack of
the leading edge decreases at high speeds. The effects of this angular
change can be seen in the pressure distributions of the tests. (For
example, see fig. 4.} XNear the leading edge the downsweeplng flow
slightly lowers the velocities on the upper surface and greatly lncresses
the lower surface velocitles as Mach number is increased. Evaluastion
of the data at critical speed indicates theat the effective angle of v

senaagg.



NACA RM L55I08 . S 11

attack is 5.50 lower than at low speeds. Increasing the design angle

of attack by a comparable amount for high-speed operation appears to

be feasible since the low momentum loss (figs. 76 to 83) indicates this
angle-of-attack increase would decrease high-~speed losses. This is in
agreement with the results of most transonic rotor tests which show a
marked increase in efficiency as the angle of attack is raised 30 to L°
above the design point selected from low-speed cascade data. The increase
in work alone with no decrease in losses would not produce the marked
increase in efficiency. (For example, see fig. 11 of ref. 3.)

A too repid increase in the passage area either from the upstream
stream tube (A] in fig. 84) to the throat Ar (ususlly found at a
high-air inlet angle, high angle-of-attack condition), or from the
throat to just downstream of the throat Ao (usually a high air-inlet
engle, low angle-of-attack condition) probably causes sepsration and
high losses. The occurrence of high losses in the tests contained hereln
cannot definitely be attribuited to this cause although the 65—(12Alo)10
and 65‘(12A218b)lo biade sections did verform poorest at f = 60° and

o= 1.0, conditions for which divergence of the passaege from upstream
to the throat was maxinum.

For many design conditions, especially et low inlet-air angles,
the minimum passage (throat) area is critical and may determine a maxi-
mum entering Mach number or influence blede section and angle-of-attack
selection. Transonic compressors are designed with particular attention
given to the ratio of throat to upstream area. Throat areas are given
for the 65'(CZOA10)10 and 65-(CZ°AEISb)lO blaede series in figures 83

and 86 as the ratio of throat area Agp %o spacing (s = Al/cos Bi).
This ratio divided by cos B1 yields the throat to upstream area

ratio AT/Al which determines the maximum entering Mech number. 1In
A
figures 85 and 86 the throat to spacing area ratio E; cos By is plotted
3
against (B - @), o and Cyp B¥ the carpet-plotting method (see ref. 8)

for accurate interpolation. Briefly, the carpet plot presented herein
was made displacing lixe points of {B1 - a) and Cio to a horizontal

scale proportional to the solidity. Thus, to interpolate between
solidities it is necessary only to fair a line between like points of
(81 - @) and Ci, &t the three given solidities and reed the line at
the horizontal distance proportional to the difference between a given

Pressure rise across cascade.- Under 1deal conditions the pressure
rise across the cascade would be controlled by the blade conflguration
and the flow removed through the side wall; however, losses from sepa-
ration have a large effect on the actual pressure rise obtained.
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Increasing the amount of flow removed through porous side walls normelly
produces & nigher pressure rise across the cascade. As greater amounts
of flow are remcved through the porous wall the pressure rise across
the cescade incregses to & maximur erd the blade-surface boundery layer
separates to decreese the pressure rise. Thus, to avoid separation
many tests, particularly those at high Mach numkters, were made at the
nignest pressure rise condition obtainable, since no two-dimensional
Tlow was possikle under these conditions. The pressure rise across the
Pe‘p'| L. .
—=g—= obtained in the tests at M; = 0.60 and 0.80 is pre-
1
serted in figure 87. The pressure rise for the 65-(12A10)10 blade sec-
tion shown in figure 87(a) decreased between M, = 0.60 and M; = 0.80
and is less than the pressure rise of the 65—(12A218b)10 Blade section

at ~ike conditions. Separation limited the pressure rise for the
65-(12A10)10 blade section at Bl = 60° and o= 1.0 (fig. 87(a)). At
8 =45°% and o= 1.0 <he pressure rise also decreases between M; = 0.60
and M. = 0.80; however, the meximum pressure rise was not obtained in
these tests due to insufficlent boundary-layer removal capacity

(fig. 87(b)). 1In figures 87(c) and 87(d) choking in the throat precludes
high entering Mackh number at low angles of attack; hence, there is a
decrease in the range of angles of attack at which Mj = 0.80 can be
attained from the range at which M] = C.60 is attainred. A similar
engle-of-attack shift may be seen in momentum-loss coefficient variation,
figures 76 to 83.

cascade

SUMMARY OF RESULTS

Figh-speed, two-3imensionsal cescade tests were made of the NHACA
65- (12874)10 and the NACA €5- (12A5Ig). )10 blade sections. From data
| 10 2-18b

obtained in these tests znd in the low-speed tests of the blade sectlions
reported in NACA R¥ 151G31 and NACA RM 1I53I30b, the following results
are sumnarized:

(1) Turning angles measured at low speed (upstream Mach number less
thar 0.15) for the uniformly loaded NACA 65- CIOAlO 10 tlade sections are
sufficiently accurate for design purpcses &t Mach numbers up to critical.
For the HACA 65- C; ApIgy, 1C blede series increasing separatlon Zrom the
kigkly cambered trailing-edge regicn xay cause the turning angle to
decresse as muck as 1° between upstream Mach number of 0.3 and the criti-
cal speed,

(2) The nigh-speed performance of NACA 65‘(CZOA10)10 and NACA
65—(010A2I3b)10 biade confilguration is lergely determined by the pas-
sage srea distribuition throcugh the cascade.

R
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(3) The angle of attack for best operation at high Mach numbers is

higher than the design angle of atteck selected to have pressure distri-
butions that are free of peaks at low speeds.

(4) The angle-of-attack range for low losses at high Mech nurbers

1s less than that at low speeds.

lengley Aeronautical Laborsatory,

National Advisory Committee for Aeronesutics,
lengley Field, Va., September 8, 1955.
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TABLE I.- CASCADE CONTIGURATICYS TLSTED

T T
l 4 T raqs Inlet air Angie of l —
| Blade gection | Sclfaivy | augie, deg i atlack, deg Type of Dats Figure
I |
[ l' [ 7.2 Porcus wall 3
1 3.3 goklieren %%
i I 1 Forous wall 1
| 60 | 12.3 Schlieren sk
1.3 Porous wali 5
l l I 15.5 Schlieren 55
1 17.1 Porous wall é
I I ‘ Lo I J 20.2 Porcus wall T
] I 7.0 Poroas wall 8
I | l I 10.9 Paorous we’l 9
l 2.0 Perous wall 10
| i L5 1%.0 Forous wall iz
I 4 17.0 PoroJss wall 12
l L i ; | 20.0 Parous wali 13
l l L [ 2.0 Forous wall T
| : )
&s_ ~ | g.8 Porons wall 1%
& (12'“—0)1" ’] l 12.& Torous wall 25
l €c 15.8 Porous wall xr
‘ 18.8 Poroua well 15
l 2.8 Porous wall 19
I I i 24.3 Farols wall 20
| l | I 5.5 Schlleren 56
5 Porous vall 21
1.5 l 4 1.5 Schlieven 5T
| 22.2 Porous well a2
‘ ‘ 4.5 Schlieren 58
v 45 15.2 Porous wall 23
I l ig.s Schlieren %‘9
ig.2 Torous weil
I l I 20.€ Forous wall 2%
I \ 23.6 Porous ~all
. I L l 25.6 Porous vall 27
[
I I— l f 8.0 | FPorcus wall 28
| e Schlierer 60
11.3 FPorcuas wall and schlierer 29 and 61
.o Porous wall 20
6o 4.1 Schlieven 62
17.0 Sorous wall 3L
| ; | a7z Schlieren 3
I 2.0 FPorous wall 32
| L19.1 Schlieren &
1.5
I I % 5.0 Porcus wall 33
I 8.0 Pexous wall 34
| 1 1.0 Porous wall 3
l 45 i k.0 Porous well 36
=7.0 Porous wa_l 37
| I ] 20.2 Porous wall 38
, 25.0 Porous vwall =
| 65~ (12451 » I z h I | 26.0 Porcus wall 4o
l v
i | £ I [ 0.5 Perous wall k1
l I l 13.5 Forous wall Lp
| 62 g 16.5 Porous wall 43
! 5.5 Perous wall Li
l I | L22.5 Porous wall 45
1.5 9 f 7.5 Torows wall L6
. 10.5 PoroJas wall Lr
| 3.5 Poroun wall and schlieren L8 and €%
L5 < i6.5 Forows wall and acklieren 49 and 66
19.5 Pordas wall 50
| 20.5 Schierea 67
: { , 22,5 Porous wall 5.
| | L | L25.5 Forous wall | 52
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Figure 28 .— Blade-surface pressure distributions and section choracteristics
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(f) Section characteristics.Tests are two dimensional for Mach numbers

Figure 30'.— Concluded.
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Figure 46.— Blade-surface pressure distributions and section characteristics
for the cascade combination.; =45°; 0 =15 ; @ =7.5° and blade

section, NACA 65-(12 A2 Isb) 10.
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Figure 47.— Blade-surface pressure distributions and section characteristics
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Figure 53.~ Schiieren photographs and b_ade-section characteristics for

a renge of Mach numbers. Cascade of NACA 65-(12470)10 compressor
blades. 38 = 60°; ¢ = 1.0; end o = 9.3°.
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Figure 55.- Schlieren protograrhs and blade-section characteristics for
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blades. B =60% o = 1.0; and o = 15.3°,.
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Figure 58.- Schlieven paoSogravhs end blade-sgction characteristics for
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blades. B =L5°% o =1.5; end o = 14.5°,
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Figure 59.-~ Sclhlieren photograpas and plade-section characteristics for
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blades. B = 60° o = 2.C; and o = 8.1°.
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Figure 64.- Schlieren rhotographs ard blede-section characteristics for

a renge of Mach numbers. CJascede of NACA 65-(12A218b) 10 compressor
blades. B = 600; 0 = 1.0; and a = 19.1°,
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Figure €7.- Schlieren photogravhs and blade-section characteristics for
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shows low-speed design angle of attack.
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Figure 72.- Ccmparison of jurning angles at low and high spesds for
NACA 65-(12A5Igy,)10 blade section et By = 60° and o = 1.0.

Arrow shkows low-speed design angie of abtack.
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Figure TT7.- Variation of momentum loss with angle of attack st constznt
Mach number for NACA 65-(12475)10 blade section at By = 45° and

g = 1.0. Arrow shows low-speed design angle of attack.
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Figure T8.- Variation of mromentum loss with angle of sttack at constant
Mack number for NACA 65-(124;,)10 blade section at B; = 60°

e

end ¢ = 1.5. Arrow shows iow-sveed deslign angle of sttack.
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Tigure 79.- Variation of momentum loss with angle of attack at constant
Mach number for NACA 65- (12A10)1o blade section at P, = 45°

and ¢ = l.5. Arrow shows low-speed design angle of attack.
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Tigure 80.- Variation of momentur lcss with angle of attack at constant
Mach number Zor NACA 65—(12A218b)10 biade section at By = 60°

and ¢ = 1.0. Arrow shows low-speed design engle of attack.
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Figure 81l.- Variation of momentum loss with angle of attack at constant
Mach number for NACA 65- (12A218b)10 olade section &t B, = 459

b and ¢ = 1.0. Arrow shows low-speed design angle of attack.
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Figure 82.- Variation of momentum loss with angle of attack at constant
Mach number for NACA €5-(12AIgy, )10 blade section at B; = 60°

and o = 1i1.5. Arrow shows low-speed design angle of attack.
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Figure 83.- Variation of momentum loss with angle of attack st constant
Mach number for NACA 65(12A218b)10 blade section at By = 45°

and g = 1.5, Arrow shows low-speed design angle of attack.
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Figure 8L.- 3lade passage areas.




Figure 85.- Throat-area carpct plot of NACA 65'(CZOA10)10 compressor blade-gection

cascade configurations.

(A large working copy of this charb may be obtained by using the request card
bound in the back of the report.)
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Figure 86.- Throwst-area carpet plot of NACA 65-(310Aglgb)10 compressor blade-section

cascade configurations.

(A large working copy of this chart may be obtained by using the request card:
bound in the back of the rcport.)
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Figure 87.- Static-pressure rise measured across cascades on NACA 65 (lEAlO)lO

and 65~ (12A218b)10 compressor blades at Mach numbers of 0.6 and 0.8.

QOICCT W VOVN

LoT



i
|I

L" i

176 01438 0571

i E

--ﬁ_"?—:_‘.r -
R PR 4

A -y



